
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A DISTRIBUTED PASSWORD SCHEME FOR NETWORK
OPERATING SYSTEMS

by

Christopher Roth

June 2002

 Thesis Advisor: Bret Michael
 Co-Advisor: Craig Rasmussen

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per response,
including the time for reviewing instruction, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden, to Washington headquarters Services, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave
blank)

2.REPORT DATE
June 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
 A Distributed Password Scheme for Network Operating Systems
6. AUTHOR(S)
 Roth, Christopher

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10.
SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is
unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Password-based user identification and authentication in a network-based operating system generally relies

upon a single file that contains user information and the encoded or hashed representations of each users’ password.

Operating system designers have resorted to various protection schemes to prevent unauthorized access to this single

file. These techniques have proved vulnerable to various attacks, the result being unauthorized access to the targeted

computer system. This paper proposes a model for a distributed password system in a network environment that

eliminates the single password file as a target without introducing additional computational complexity or incorporating

additional cost to the user with such items as tokens or biometrics. This application incorporates proven encryption

techniques and a distributed architecture to enhance the reliability of an operating system’s identification and

authentication procedures. The paper provides an object-oriented model of this approach, along with an analysis of a

possible implementation in a current operating system.

15. NUMBER OF
PAGES 49

14. SUBJECT TERMS
Password, Encryption, Attacker, Exploitation, Vulnerabilities, Security

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

DISTRIBUTED PASSWORD SCHEME FOR NETWORK OPERATING
SYSTEM

Christopher Roth

Major, United States Army
B.A., La Salle University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2002

Author: Christopher Roth

Approved by:

James B. Michael
Thesis Advisor

Craig Rasmussen
Co-Advisor

Christopher Eagle
Chairman, Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Password-based user identification and authentication in a network-based

operating system generally relies upon a single file that contains user information and the

encoded or hashed representations of each users’ password. Operating system designers

have resorted to various protection schemes to prevent unauthorized access to this single

file. These techniques have proved vulnerable to various attacks, the result being

unauthorized access to the targeted computer system. This paper proposes a model for a

distributed password system in a network environment that eliminates the single

password file as a target without introducing additional computational complexity or

incorporating additional cost to the user with such items as tokens or biometrics. This

application incorporates proven encryption techniques and a distributed architecture to

enhance the reliability of an operating system’s identification and authentication

procedures. The paper provides an object-oriented model of this approach, along with an

analysis of a possible implementation in a current operating system.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PROBLEM STATEMENT... 1
B. DISCUSSION .. 1
C. HYBRID ENCRYPTION SCHEME: A WAY FORWARD...................... 2

II. EXPLOITATION OF PASSWORDS AND PASSWORD FILES 3
A. THE BASIS OF THE CONCERNS .. 3

1. Infomaster and the Penetration of Bureau of Land Management 4
2. The INTERNET Worm of 1987.. 4
3. The First Documented Case of Cyber Espionage.................................... 4
4. Password Insecurities of Tomorrow... 5

B. PRIMARY TARGET.. 5

III. PASSWORD SCHEMES.. 7
A. MICROSOFT NETWORKING OPERATING SYSTEMS 7

1. Login and Authentication.. 7
2. Password Storage ... 8
3. System Key (SYSKEY) .. 8
4. Single Password File... 9

B. UNIX... 9
1. Password File Storage.. 9
2. Crypt (3) Function Key.. 10
3. User login .. 10
4. System Storage of the Password File .. 11

IV. PASSWORD IMPLEMENTATION... 13
A. WEAKNESSES OF PASSWORDS... 13

1. Password Attacks ... 13
2. Poor Password Choices.. 13
3. Policies to Protect Passwords .. 14

B. WINDOWS FLAWS... 14
1. Old Hash Conversion... 15
2. Password “Cracking” .. 16

a. Backward Compatibility ... 17
C. UNIX FLAWS ... 19

1. World Readable Password File... 19
2. Shadow Password File Vulnerability.. 19

D. GENERAL WEAKNESSES OF PASSWORDS .. 20
E. IMPLEMENTATION OF PASSPHRASES.. 22

V. A DISTRIBUTED PASSWORD SCHEME FOR NETWORK OPERATING
SYSTEMS .. 25
A. MIGRATION FROM PASSWORDS TO PASSPHRASES 25

 vii

B. DPS IDENTIFICATION AND AUTHENTICATION 26
C. ENCRYPTION PHASE.. 28

1. Encryption Devices... 29
D. ANALYSIS OF THE DPS ALGORITHM ... 30
E. UML MODEL ... 34
F. LINUX: A CANDIDATE FOR THE DPS .. 37
G. MONETARY COST OF IMPLEMENTATION 39
H. WEAKNESSES OF THE DPS... 41

1. Denial of Service ... 41
2. Software Implementation .. 41
3. Mistyped Passphrase.. 42
4. Common Passphrases .. 42
5. Login Delays.. 42

VI. CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK................ 45

LIST OF REFERENCES ... 47

INITIAL DISTRIBUTION LIST .. 49

 viii

LIST OF FIGURES

Figure 3.1 Challenge/Response Authentication [Ref.]... 8
Figure 3.2 UNIX Password Implementation... 10
Figure 4.1 Nordhal-Hagen WIN2K/NT Password Recovery Tool ... 16
Figure 4.2 L0phtCrack 2.5 .. 17
Figure 4.3 LanMAN Hash... 18
Figure 5.1 Passing Credentials .. 26
Figure 5.2 Encryption of Segments... 28
Figure 5.3 DES Encryption Example.. 29
Figure 5.4 Responses Back to Server.. 30
Figure 5.5 Activity Diagram ... 36
Figure 5.6 DPS Sequence Diagram... 37
Figure 5.7 Physical and Logical View VMWare ... 40

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 4.1 Distribution of Actual Passwords. From [Ref.] ... 13
Table 5.1 user_id Table... 27
Table 5.2 Segmented Passphrase ... 27
Table 5.3 High Level Use Case... 34
Table 5.4 Expanded Use Case... 35

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

The author would like to acknowledge Rob “Whitey” Beck, @stake’s security

engineer. Our conversation on a January afternoon sent me down this path.

The author would also like to acknowledge the support of the C4 Group of the

National Security Agency for the direction and resources provided through the Computer

Network Research Lab (CNRL).

The author would like to thank Dr. Bret Michael for his vision, guidance, and

patience during this research effort. The author would also like to thank Dr. Craig

Rasmussen for his critical review of this thesis.

Finally, the author owes a tremendous amount of gratitude to his wife, Noële, his

son Patrick, and his daughter Lauren, for their enduring patience, support and love during

the completion of this work.

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

I. INTRODUCTION

A. PROBLEM STATEMENT

Unauthorized access to an information system is a hacker’s dream, a computer

user’s or owner’s headache, and a computer administrator’s nightmare. Some of the

better-known attacks on computing systems over the past twenty years have relied to

some extent on “cracking” password files in order for the attack program to obtain

privileged use of the targeted system. If the administrator account, or that of another

trusted user, is compromised, then the entire information system may become

compromised.

As the sophistication of the techniques for protecting stored passwords has

increased, so too have the methods used by adversaries to subvert such protection

mechanisms. Encryption has been used to protect stored and transmitted password data.

However, examples abound of poorly implemented password encryption schemes, and of

the use of password-encryption schemes that are not appropriate (e.g., not strong enough,

or too strong) for use with a particular type of information system.

B. DISCUSSION

An operating system bases much of its protection on “knowing” who a user of the

system is [Ref. 1]. A valid user needs to be identified. This is usually done with a user

identification, or user id. Though there is no standard convention, most systems use a

combination of a valid user’s names and/or initials. For example, the convention of using

the first initial of the first name followed by the full last name would create for this

author the user id of “croth.” If there are multiple users with similar names, then a

middle initial or a series of numbers (e.g. croth, croth2, etc.) might be used to distinguish

each of the individuals. Within a given system, a user id must be uniquely associated

with only one user.

Once the system is presented with a valid user id, the system must verify that the

presenter is truly an authorized user, and not someone masquerading as an authorized

user. This is user authentication. The authentication process is based on shared

1

knowledge that only the user and the computer would possess. The most common

mechanism is a password [Ref. 1].

In response to input of a valid user id, the computer prompts the presenter of the

id for the associated password. The computer applies either an encryption algorithm or a

hashing algorithm to the password and compares the result to what is stored in the

password file. If this value matches the value associated with the user id presented, then

the user is granted access to the system. If value does not match, then the user does not

gain access to the system.

Note that the passwords themselves are not stored. It is the computed values

associated with them that are stored on the system in a password file. For the sake of

simplicity, we may view a password file entry as consisting of a user id and the hashed or

encrypted image of the user’s password. The schemes by which these password files are

stored mighty vary by system, but they all contain the same data: a list of user ids

together with their associated password values.

C. HYBRID ENCRYPTION SCHEME: A WAY FORWARD

In this thesis we introduce a hybrid encryption scheme that involves distributing

the protection throughout the physical components of the information system, obviating

the need for centralized storage of password data. The scheme will use various

encryption techniques in conjunction with the distributed protection to eliminate a single

point of failure, or (in an adversary’s case) a single “golden target”: the password file.

The scheme attempts to mitigate the risks to a systems password file from documented

failures, as well as weaknesses that have been exploited, by building a more secure

identification and authentication (I&A) process without incurring the additional costs of

smart cards, tokens, or the incorporation of biometrics.

2

II. EXPLOITATION OF PASSWORDS AND PASSWORD FILES

After 11 September 2002, the United States has become more aware of its

vulnerabilities both in the physical world and in the cyber world. Recently a USA Today

newspaper article reported:

The vast array of potential targets and the lack of adequate safeguards
have made addressing the threat daunting. Among the recent targets that
terrorists have discussed, according to people with knowledge of
intelligence briefings:

• The Centers for Disease Control and Prevention, based in Atlanta.
It is charged with developing the nation's response to potential
attacks involving biological warfare.

• The nation's financial network, which could shut down the flow of
banking data. The attack would focus on the FedWire, the money-
movement clearing system maintained by the Federal Reserve
Board.

• Computer systems that operate water-treatment plants, which could
contaminate water supplies.

• Computer networks that run electrical grids and dams.

• As many targets as possible in a major city. Los Angeles and San
Francisco have been mentioned by terrorists, intelligence officials
say.

• Facilities that control the flow of information over the Internet.
Richard Clarke, the White House special adviser on cybersecurity,
says such sites, of which there are 20 to 25, are "only secure in
their obscurity."

• The nation's communications network, including telephone and
911 call centers.

• Air traffic control, rail and public transportation systems.
Officials are most concerned that a cyberattack could be coupled with a
conventional terrorist attack, such as those on Sept. 11, and hinder rescue efforts
[Ref. 2].

A. THE BASIS OF THE CONCERNS
The terrorist attacks on the World Trade Center and the Pentagon, as well as the

Oklahoma City bombing, showed that high-profile targets are vulnerable. They also

demonstrated that it is not hard to obtain the necessary weapons and training to carry out
3

such attacks on United States (U.S.) soil. Although physical terrorist attacks on U.S. soil

are relatively new, attacks on computer systems throughout the U.S. have occurred since

computers became capable of communicating with one another.

1. Infomaster and the Penetration of Bureau of Land Management
In the spring of 1992, “Infomaster”, a ‘hacker’ of limited skills but enormous

persistence, had remotely penetrated the computer systems of the Bureau of Land

Management (BLM) in Portland, Oregon [Ref. 3]. From there, he had access to the

agency’s national network, which included the BLM office in Sacramento. The

computers in the Sacramento office controlled every dam in the northern part of the state

[Ref. 3]. With a few simple commands, the attacker “could bury some of the world’s

richest agriculture land beneath a tidal wave, killing hundreds of people, destroying

thousands of homes, and throwing the futures (commodities) market into chaos.” [Ref. 3].

Infomaster used basic techniques to gain access to the BLM and other networks. He

guessed passwords. He penetrated and altered password files. He used tools available to

“crack” passwords [Ref. 3].

2. The INTERNET Worm of 1987
Even Robert T. Morris, the author of the INTERNET Worm that brought the

infant INTERNET to a stop in 1987, used the weaknesses of passwords and password

files in conjunction with the vulnerabilities in the sendmail program and the finger

program [Ref. 1, 4]. The worm tried guessing passwords. When it succeeded, it

penetrated the system and captured the password file. The password file contained the

passwords in encrypted form, but the ciphertext of each password was visible. Morris’

worm encrypted various popular passwords and compared the resulting ciphertext to the

entries in the password file [Ref. 1, 4]. If unsuccessful, the worm tried the dictionary file

stored on the system for use by spelling checkers [Ref. 1, 4]. Whenever it got a match, it

would log into the account and then start looking for other machines to attack [Ref. 1, 4].

Morris’ worm was classified as benign, in that it collected the account passwords but did

not save them [Ref. 1].

3. The First Documented Case of Cyber Espionage
 As early as 1988, Clifford Stoll became the author of the first book documenting

a case of cyber espionage. As Stoll documented his case, he discovered that passwords

4

and password files became two of the main targets [Ref. 5]. Stoll “witnessed” the

attacker editing password files, deleting the passwords from old users, and basically

bringing old, inactive accounts to life [Ref. 5]. The attacker did not break the encryption,

which at the time was done using the Data Encryption Standard (DES), but actually stole

accounts by deleting or changing the passwords that were in the password file [Ref. 5].

4. Password Insecurities of Tomorrow
Though all these cases might seem dated to today’s more sophisticated attacks,

passwords and password files are still prime targets of attackers. It was recently

discovered that, as Microsoft shifts its focus and strategy to its new .Net framework of

integrated web-based software delivery, the Microsoft Developer Network

documentation instructs developers to create a file containing users’ passwords and place

it in a directory accessible from the Web, providing a potentially lucrative target for

attackers [Ref. 6].

B. PRIMARY TARGET
All of the actual cyber attacks illustrated above occurred when passwords and

password files were compromised to give an attacker access to a system. Once a system

is penetrated, the exploitation of the password file allows the attacker further penetration,

and escalation of rights and privileges. The password file is a single target, which can

become a single point of failure.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

III. PASSWORD SCHEMES

A. MICROSOFT NETWORKING OPERATING SYSTEMS
In Microsoft’s network operating systems, Windows NT and Windows 2000, the

passwords are not stored in clear text. Windows NT stores user-related information in

the System’s Account Manager (SAM) portion of the domain controllers’ registries. The

SAM does not store the actual passwords, but stores two 16-byte hash values of the

password [Ref. 7].

1. Login and Authentication
The passwords are never exchanged between the client and the server, either. The

NT network uses a challenge-and-response system, called Challenge Handshake

Authentication Protocol (CHAP) [Ref. 7]. As a user logs in as a client, the client side

calculates a 16-byte hash value of the user’s password [Ref. 7]. The client then connects

to the server and sends the user id across the network [Ref. 7]. The server generates a

random eight-byte nonce, known as the challenge, and sends it to the client [Ref. 7]. The

client uses three distinct DES keys to encrypt the challenge. Key one contains the first

seven bytes of the password’s hash value [Ref. 7]. Key two contains the next seven bytes

in the password’s hash. Key three contains the remaining two bytes of the password’s

hash, to which are appended five zero filled bytes. The client system applies each key to

the nonce so that the eight-byte challenge results in three 64-bit outputs, which is the 24-

byte response [Ref. 7]. After the server generates a nonce and sends the challenge, it

looks up the user’s password hash value stored in the SAM database [Ref. 7]. The server

then creates a response by performing the same calculation that the client performed

using the nonce and hash value. If the responses match, then the server authenticates the

user (figure 3.1) [Ref. 7].

7

Shared secret:
User’s password hash

(never passed on the wire)
AD
Or

SAM User Enters Password

User’s password hash from SAM or AD
WinLogin

Cleartext password is hashed (1) Client requests logon
8-byte
challenge 8-byte

challenge (2) Server issues 8-byte challenge

Challenged hashed with
user’s password hash

(3) Client hashes challenge with user’s password hash, sends
response to server Challenged hashed with

user’s password hash

(4) Server compares response with hash of challenge and grants
or denies logon Response

Response

 Figure 3.1 Challenge/Response Authentication [Ref. 7]

2. Password Storage
The SAM file stores the password information using a one-way hashing

algorithm. Theoretically speaking, this is a function h which is easy to compute, but for

which it is computationally infeasible to find two messages M and M’ such that h(M) =

h(M’). [Ref. 8]. In other words, once the password is hashed using this function, the

value cannot be decrypted by any practical method. For all NT systems and Windows

2000 stand-alone systems, the SAM file is kept in the file

%systemroot%\system32\config\sam [Ref. 7]. On Windows 2000 domain controllers,

this information is kept in the Active Directory (%systemroot%\ntds\ntds.dit) [Ref. 7].

The format for the SAM files is the same in either case, but they are accessed differently

[Ref. 7].

3. System Key (SYSKEY)
Later versions of NT (NT4 Service Pack 3) and Windows 2000 provided more

security with an additional layer of encryption. This additional layer is the System Key,

or SYSKEY. Once the hashes are computed, the SYSKEY then encrypts the hashes,

using a random 128-bit key. The SYSKEY can be stored in three ways: in the registry

8

and available automatically upon boot-up (the default), in the registry but locked with a

password that must be provided at boot time, or stored on a floppy disk that must be

supplied at boot time [Ref. 7].

4. Single Password File
The final layer of protection is the SAM file and its content can only be accessed

with Administrator privileges. The bottom line is that, although it is protected, there still

remains a single password file.

B. UNIX
Since there are multiple versions of the Unix operating system, we will discuss

the generic password scheme.

1. Password File Storage
Like Windows, Unix does not store passwords themselves in a password file, but

stores the encrypted password along with some additional information. A user types in a

password of up to eight characters. This is converted into a 56-bit value (using seven-bit

ASCII) that serves as the key input into the encryption routine. The encryption routine,

known as crypt (3) is based on DES. The DES algorithm is modified using a 12 bit “salt”

value, which is usually tied to the value of the computer’s system clock at the time when

the password was assigned to the user. This modified algorithm is exercised with a data

input consisting of 64-bit block of zeros. The output is then used as the input for a

second encryption. The process is repeated for a total of 25 encryptions. The resulting

64-bit encryption is then translated into an 11-character sequence [Ref. 9, 10].

This result, along with a plaintext copy of the salt, is stored in the password file

(figure 3.2). The salt assists in the prevention of duplicate copies of the encrypted

password. The salt is tied to the time of password creation, then attached to the password

before it goes through the encryption routine. The chance that two users, with the same

passwords, have the same encrypted value is one in 4096. [Ref .10]. The salt also

increases the size of the password without any additional burden on the user, and it

prevents the use of a hardware implementation of DES to assist in a brute force guessing

attack [Ref. 9].

9

10

2. Crypt (3) Function Key move to next page
The key used for the crypt (3) function is the user’s password; the actual encoded

string is all nulls. A point of clarification is needed. Though most literature calls this

encryption, cryptographers call this encoding, since the encoded string is all null. The salt

is a two-character string chosen from the set [a-zA-Z0-9./], linked to the time at which

the password was first created. This allows the algorithm to be perturbed in one of 4096

ways [Ref. 11].

Figure 3.2 UNIX Password Implementation.

3. User login
When a user logs on to a Unix system, the user provides a unique user ID and a

password. The operating system then uses the user ID to index into the password file and

retrieve the plaintext salt value and the encrypted password; these are used as input to the

encryption routine. If the result matches the stored value, the password is accepted [Ref.

9].

Key

Salt
[a-zA-Z0-9./]

User’s password
8 characters

crypt (3)

64 bit plaintext
00000000

(Initial Input)

64 bit cipher text
Hrew7n98

64 bit cipher text
Hrew7n98

64 bit cipher text
is used as input for 25 iterations

Final
64 bit cipher text

11 characters +
2 character salt
 = 13 characters

The eight-character password is converted into a 56-bit value (using 7-bit ASCII)

that serves as the key input to the encryption routing. This 56-bit value allows the key

space to consist of 256 possible values.

4. System Storage of the Password File
Unix stores the password file in the /etc/passwd file. This file is world-readable,

meaning anyone can have access to the file. Some versions, like LINUX, provide added

protection by shadowing the password file. This relocates the password file’s values to

another file (/etc/shadow) so that it can be read only by a user with root privileges. The

original password file /etc/passwd no longer contains the encrypted values; it just

contains an x value that indicates that the password files have been shadowed. The

encrypted passwords have not been changed or modified; they have just been moved to a

more protective file.

The shadow suite also adds additional security features, such as tracking password

changes, age of password. It also allows for the use of longer than eight character

passwords. Even with all the additional security features added, the system is still left

with a single file that holds user id and encryption. [Ref. 10].

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

IV. PASSWORD IMPLEMENTATION

A. WEAKNESSES OF PASSWORDS
A user is identified by a unique user id and authenticated with a password. The

password should, in theory, be easy to remember, hard to guess, and only known to that

user. In actuality, passwords are one of the weaknesses of computer security.

1. Password Attacks
Passwords can be attacked in several different manners. An attacker could try all

possible password combinations. He could try many probable passwords. Knowing the

user might provide clues to the user’s password. The system, or even the work area

might contain the password, in a written or electronic form. If all else fails, an attacker

might just ask the user for the password. Foundstone, Inc., a computer security

consulting and training organization, states, “Weak passwords are the primary way in

which we defeat Windows 2000 networks in professional penetration testing

engagements.” [Ref. 7].

2. Poor Password Choices
Various studies from the late 1970s to today have shown that users tend to choose

poor, easily guessable, or swiftly cracked passwords. What’s worse, the studies show

that users do not learn from previous mistakes or examples. In 1979, a sample consisting

of 3,300 passwords indicated that, given a reasonable amount of time using the tools

available, eighty-six percent could be uncovered in one week. [Ref. 1, 12] (Table 4.1).

Actual Number Percent Description

15 .5 % single ASCII character
72 2% two ASCII character
464 14% three ASCII character
477 14% four alphabetic character
706 21% five alphabetic characters, all of the same case
605 18% six lowercase alphabetic characters
492 15% words in dictionaries or lists of names
2831 86% Total of all above categories

Table 4.1 Distribution of Actual Passwords. From [Ref. 1].

The results of similar studies conducted in 1990 and 1992, in which five times as

many passwords were collected, showed that the same problems were still occurring,

13

even after Morris’ Internet Worm of 1988 used these weaknesses to spread throughout

the Internet, and eventually bring it to its knees [Ref. 1].

3. Policies to Protect Passwords
As system administrators and designers became more educated in how an attacker

can gain access to a system through weak passwords, they established criteria for “good”

passwords. These were both written and computer enforced policies. They included

increasing the character space to include, not just letters and numbers but also special

characters, changing the case at least once, making the password longer, avoidance of

actual names or words, use of an unlikely password, regular replacement of the password

and the strong recommendation that passwords should neither be written down nor shared

[Ref. 1].

A password of length of three characters or less of a single case can be any one of

26 + 262 + 263 = 18,278 possible combinations. Using an assumed rate of one password

per millisecond, every combination could be tried in 18.278 seconds. Even increasing the

character length to four or five increases the time to approximately eight minutes or three

and one-half hours, respectively. Pfleeger states that it would take one hundred hours to

test all six-letter words from letters of only one case, but it would take approximately two

years to test all six-symbol passwords from the set of all upper- and lower-case letters

and all decimal digits. Using single-case letters, there are 266 possible six-character

passwords. Searching for all possible combinations in a standard English collegiate

dictionary, 99.95% of these would not be found [Ref. 1].

Even with the advent of these policies, the implementation of passwords yielded

additional vulnerabilities that could be exploited. Some of these vulnerabilities were

caused by users who managed to adhere to the letter of the policies as opposed to the

spirit of the policies. Others were based on flawed implementations produced by the

manufacturers of the systems.

B. WINDOWS FLAWS
The SYSKEY was added to later versions of NT and implemented in WINDOWS

2000. The SYSKEY provides another layer of protection of the password file. It actually

takes the hashes in the password file and further encrypts them. This was to prevent a

brute force attack or dictionary attack. As stated previously, the SYSKEY could be

14

stored several different ways, and added another layer of protection. SYSKEY applies a

second, 128-bit strong round of encryption to the password hashes using a unique key

that is either stored in the registry, optionally protected by a password, or on a floppy disk

[Ref. 7, 13]. However, these measures provide a false sense of security due to backward

compatibility issues.

1. Old Hash Conversion
A user can actually inject fraudulent hashes and bypass WINDOWS’ security

features. Petter Nordhal-Hagen actually developed a tool that allows an attacker who has

physical control of the box to boot a WINDOWS box into a LINUX operating system.

The tool pulls the SAM file into a temporary directory, and then allows an attacker to

change the password of any user. It does this by using Microsoft’s hashing algorithm. It

then places the new hashes into the SAM file, and writes the new SAM file back into the

system. Nordhal-Hagen also discovered that if the SYSKEY is enabled, it will

automatically convert the old-style hashes (without the SYSKEY’s encryption) to the

new SYSKEY’ed hashes once the system is rebooted [Ref. 7] (Figure 4.1). The

WINDOWS security features do not log the changes because they are done in a different

operating system. This attack will not work with the WIN2K domain controllers,

because they store the password hashes in the active directory and not in the SAM file.

But a more refined technique, to which the WIN2K domain controllers are susceptible,

might not be far off [Ref. 7, 13].

15

Figure 4.1 Nordhal-Hagen WIN2K/NT Password Recovery Tool

There are versions of the utility that boot the system into MS-DOS, and then

change the passwords by changing the hashes. Again, the hashes are never “cracked;”

they are just rewritten.

2. Password “Cracking”
Even though there are no known mechanism for decrypting the passwords hashed

using the NT/2000 algorithms, password are recovered from the hashes using various

tools [Ref. 7]. L0phtcrack and John the Ripper are just a few of the tools that duplicate

the hashing techniques that WINDOWS uses to match hashes stored in the SAM file

[Ref. 7]. What makes it even easier to match the hashes is another flaw in the Microsoft

networking operating system in order to make it backward compatible with its

predecessors (figure 4.2).

16

Figure 4.2 L0phtCrack 2.5

a. Backward Compatibility
(1.) Local Area Network Manager (LANMan). This backward

compatibility issue has come back to haunt Microsoft’s network operating system. It is

the implementation of the Local Area Network (LAN) Manager hash. This is a key

design failing of Windows NT/2000 [Ref. 7, 13]. Both NT and WIN2000 store two

versions of hashes for a user: the LANManager (LM) hash and the NT LANManager

(NTLM) hash.

 The first eight bytes of the LM hash are derived from the first

seven characters of the user’s password, and the second 8 bytes are derived through the

eighth through the fourteenth character [Ref. 7, 13]. An eight-character password actually

reduces to a seven-character password together with a one-character password (figure

4.3). Searching the space of seven-character strings is not difficult with modern

computers. Both tools mentioned automate this process, making it very easy to match the

hashes [Ref. 7, 13, 14].

17

First 8 bytes
of LM Hash

Second 8 bytes
of LM Hash

Derived from first 7
Characters of account password

Derived from second 7
Characters of account password

Figure 4.3 LanMAN Hash [Ref. 7].

The system administrator does have the ability to turn off the storage of the LM hash, but

there are consequences. This can break certain applications, and is only recommended on

test systems, not on actual production systems [Ref. 7]. Even by disabling the LM

storage, currently-stored LM hashes are not erased [Ref. 7]. The only way to prevent the

need for an LM hash for authentication is to have a strictly homogenous Windows 2000

environment using the built-in Kerberos v5 protocol that is new in Windows 2000 [Ref.

7]. This is not a default setting, while the LM hash is, and there is currently no

mechanism to force the use of Kerberos [Ref. 7].

(2..) Local Security Policy Setting Store. Another compatibility

issue is in the Local Security Policy Setting Store Passwords with Reversible Encryption.

Though this is only applicable on the Active Directory Domain Controllers, it does lead

to the ability of passwords being stored in a reversible encryption, instead of a one-way

hash. By default it is turned off, but, if the Domain Controller is compromised by an

attacker, this setting can be enabled. This forces all newly created passwords to be stored

in the SAM/AD form as normal, and also in a separate reversible encrypted format [Ref.

7]. Microsoft uses this with remote protocols and services like MSChap v1, Digest

Authentication, Apple Talk Remote Access, and Internet Authentication Services, all of

which require this setting. Although there is no tool that could dump the plaintext

18

passwords while Reversible Encryption is enabled, the ability to create one does exist

[Ref. 7].

C. UNIX FLAWS
Older versions of UNIX, and the modern UNIX-flavor operating systems, use

DES for their encryption. DES is limited to eight characters as the key, so in actuality a

user is limited to only an eight-character password. Newer versions of the software have

replaced DES with the MD5 hashing algorithm. This has improved on DES in several

ways. The key is no longer limited to eight characters. In actuality the passwords could

have infinite length. The MD5 keyspace is larger than DES.

1. World Readable Password File

Even with the switch to from DES to MD5, the password file is still world-

readable. Having a password file world-readable allows any user to grab it, take the

hashes, and run them through a password cracker. Current versions of Linux add the

additional protection of “shadowing” the password file. The shadow password file

contains the encrypted or hashed versions of the passwords on the system and makes

them readable by root. Shadowing is considered essential for password security [Ref.

11]. There are packages that allow for modification of older Unix operating systems, to

create a shadow file. At the same time, there are current versions of UNIX that are still

not using the shadow capability. The most surprising is that MAC OS X, built on Open

BSD, has a utility called NetInfo that “has a ‘feature’ that, strangely, gives out the hashed

passwords to ANY user that is logged on (not sure if this is because it isn't using a

shadow password file, or if NetInfo just plain compromises the shadow). There is a

utility called ‘Malevolence’ that will allow a user to view the password file.” [Ref. 15].

2. Shadow Password File Vulnerability
Even shadow passwords and shadow password files are not totally secure.

Carolyn Mienel has documented several attacks that work on the shadow file on many,

but not all UNIX systems. One attack involves creating a program that makes successive

calls to the getpwent() to obtain the password file. There are sometimes backup shadow

password files that are readable. Even a core dump or segmentation fault that occurs

19

while running a program that must access a password will contain the password.

Searching through the core dump will provide both user name and password [Ref. 16].

Even with all the additional protection of a shadow password, if an attacker

manages to gain root access, he can access the shadow password file. The shadow

password file could then be run through a password cracker for Unix-flavor systems, such

as Crack or John the Ripper. Crack was written with the versatility to use either DES or

MD5 for the crypt function. There is also a password cracker called Slurpie that runs in a

distributed environment, using multiple machines. This decreases the time needed to

crack the password file [Ref. 11].

Unix use of passwords leaves a password exposed in various states and utilities

throughout the system. If not properly configured, the password can be relatively

unprotected and be retrieved by an attacker. For example, if the utility for downloading

email from a remote server is run in a daemon mode, instead of user running it

individually, the utility will look for the user’s password in its control file. The

passwords are stored in this file in clear text. The challenge and response authentication

for Post Office Protocol version 3 (POP3), known as Popauth, requires that the server

have access to the user’s clear text-password. Popauth must store the user’s POP3

password in a separate database. This causes two problems. The systems and the POP3

password databases must be synchronized with one another. The second, who is more

serious, is Popauth stores the password in its database using a reversible encryption. This

file is relatively easy to compromise. What is worse is that the compromise of this file

means the system’s password file is compromised [Ref. 11].

D. GENERAL WEAKNESSES OF PASSWORDS
Passwords are “cracked” using three methods. These are attacks on password

files, dictionary attacks, and the brute force method.

Both the length of the password (the number of alphanumeric characters) and the

set of permissible characters (letters, upper and lower case, numbers, additional symbols

(i.e.,!, @, #, $, %, ^, &, *, etc.) determine how fast a password can be “cracked.” For

example, using a password that is four characters in length and consists of upper and

lower case letters (alphabet size 52), there are 524 possible passwords. Given a

password-cracking program that can generate, encrypt and compare 106 strings per

20

minute, it will take approximately seven minutes to try all four-character strings. As we

increase the alphabet size as well as the length of the password, the time to crack a

password by brute force would increase. Given a password of exactly eight characters in

length, using the same alphabet size, the number of possible passwords has increased to

528. Using the original password-cracking program, given the same hypothetical 106

strings per minute, it would take approximately fifty years, on average, to determine the

password. The password cracking programs that are currently available, both

commercial and freeware, can run faster than this, due to faster processors, updated

software, and more efficient coding of attack tools [Ref. 1]. Though no formal statistical

analysis has been done, in 1999, Jim Williams, running L0phtcrack 2.5 on a Pentium 166,

cracked three-letter passwords in seconds and six-letter passwords in seven minutes,

using a dictionary attack. By allowing the attack to run overnight, he was able to crack

seven and eight character alphanumeric passwords in less than eight hours. More

recently, @Stake has released L0phtcrack version 3.0, and today’s processors are faster

by an order of magnitude than those discussed here [Ref. 17].

Even L0pht Heavy Industries’ engineers have posted some startling statistics.

During an audit that they performed of a large high-technology company, using their

older version of the software, 90 percent of the passwords were cracked in under 48 hours

on a Pentium II/300. Eighteen percent of these passwords were cracked in less than 10

minutes. More importantly, the Administrator and most of the Domain Admin passwords

were cracked even though the company had a policy requiring passwords longer than

eight characters with at least one upper case character plus a numeric or symbol character

[Ref. 17].

These statistics are all based on the brute-force method of trying every

combination possible. Using a dictionary attack, or what L0phtcrack calls a “Hybrid”

attack, in which dictionary words are mixed with other characters (e.g., 1banana2), the

time required would not be as long. This attack is based on the assumption that a user

would pick a word that is contained in a dictionary file used in the attack.

As previous stated, the password file is one of the primary targets of an attacker.

Knowing this, we want to eliminate the target. Passwords have been a part of the I&A

process from the beginning. They have also been one of the Achilles’ heels of computer

21

systems. The problems associated with passwords generally result from their being too

simple, or too common, to too personal (e.g., containing birth dates, or names of

children). Attackers understand this and have created a methodology for testing

passwords based on user information, as well as tools for breaking passwords.

As security professionals have come to understand this, more stringent password

selection guidelines have been implemented with some success. However, as recently as

April 2002, studies have shown that approximately fifty percent of computer users base

passwords on the name of a family member, and about thirty percent use a public figure

such as a sporting hero or a media idol. Based on the study conducted by Pentasafe

Security Technologies Ltd., psychologists at City University in London stated that it is

possible to predict passwords based on the personality of the user, or even on the items

on a users desk [Ref. 18].

E. IMPLEMENTATION OF PASSPHRASES

Knowing the weaknesses of passwords, computer security experts often advocate

the expansion of the password to a passphrase. Passphrases meet three security goals of

the security-oriented network administrator:

1. They are easy to remember.
2. They are difficult to guess or crack (or at least harder than
passwords), by virtue of their greater length.
3. They are inexpensive to implement.

Given a passphrase, one can modify it in various ways. This modification should

be chosen to remain easy to remember but more difficult to crack [Ref. 17, 19]. Security

experts recommend setting the default length of passwords to the longest available to the

system [Ref. 17, 18, 19].

Various programs have implemented passphrases instead of passwords. Pretty

Good Privacy (PGP) uses passphrases to generate private keys for public-key

cryptography. The forty-character passphrase is converted into a random key using a

one-way hashing function. This technique is called key crunching. It creates a pseudo-

random bit string, which is used as a key for encryption.

22

If increasing the length of passwords makes them harder to “crack”, why not just

replace passwords with passphrases throughout all computer systems for Identification

and Authentication?

Passphrases that are English words are relatively weak out to a length of twenty

characters. The reason is that, for long streams of text, the redundancy in English is such

that each of the 26 letters is comparable to 1.5 to 2.3 bits (as opposed to 4.7 bits if all

letters were equally likely) [Ref. 14]. This means that breaking a 15-character passphrase

is effectively impossible if the passphrase is randomly chosen from all character

combinations, while it is relatively simple if the password is known to be an English

phrase [Ref. 14].

The modified passphrases, either encoded or hashed, would be stored in a single

file. Security experts still expect password cracking programs to uncover passphrases

after sustained effort [Ref. 17]. The weaknesses of the passphrases with the known

encryption schemes contribute to this. If additional factors that contribute to cracking

passphrases are factored in, a forty-character passphrase may not be as formidable as

originally thought. Cryptographers have asserted that searching through forty-character

phrases is actually easier than searching through 64-bit random keys [Ref. 20]. A variety

of techniques are employed, including Markov chains, phonetic generation algorithms,

and concatenation of small words, in the cracking of passphrases [Ref. 14].

Hackers have even attacked PGP’s forty-character passphrases. PGPCrack is a

widely distributed brute-force utility, designed for cracking conventionally PGP-

encrypted files and attacking the secret key's passphrase. PGPCrack relies on a

dictionary file, trying each word as a potential passphrase. On a conventionally

encrypted PGP file, the utility cycled through over 15,000 words per second on a 100

MHz Pentium. As a point of reference, compare this to the 5,000 to 7,000 words per

second tested by typical UNIX password cracking utilities on the same machine [Ref.

21].

Passphrases add to the protection against a straight dictionary attack on a

password file. In this context, the advantage of a passphrase is that it is a concatenation

of multiple words, and will therefore not be found in any conventional dictionary. An

additional benefit, due to a passphrases’ length, is that an attacker’s attempt to guess an

authorized user’s password is likely to fail.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

V. A DISTRIBUTED PASSWORD SCHEME FOR NETWORK

OPERATING SYSTEMS

The Distributed Password Scheme (DPS) consists of three parts. These are the

login use of a passphrase, the segmentation of the passphrase, and the encryption and

storage of these segments.

A. MIGRATION FROM PASSWORDS TO PASSPHRASES

The first implementation of the DPS would be an increase of the typical password

size of eight characters to something larger; here we consider a passphrase consisting of

approximately forty spaces. A typical dictionary attack would be useless against a forty-

character passphrase, since there are no forty-character words in the standard English

dictionary. This in itself is not a new concept. Computer security experts have been

proposing a shift to passphrase for some time [Ref. 17, 19].

The use of non-dictionary words and special characters has forced attackers to

alter their methods and their tools. Now, instead of using a dictionary attack, they need

to use every possible string over the chosen alphabet. Such a brute force attack, though

taking longer to crack passwords, would eventually be successful. Nevertheless, simply

increasing the alphabet size and increasing the password length will help in making the

authentication process more secure. On the other hand, Moore’s Law states that the speed

of the microprocessors will double approximately every eighteen months to two years.

As the processor speed increases so will the search speed. This leads us into the second

part of the DPS, which is its increased use of cryptography.

Currently, all of the password-cracking tools used to attack the password file are

based on knowledge of the encryption methods or hashing schemes that are implemented

by the operating system. Tools such as “John the Ripper,” a password “cracker” for Unix

systems, and L0phtcrack and Nordhal-Hagen’s Password recover tool for Microsoft

operating systems use the password protection schemes to match hashes or encryptions to

discover the passwords. Nordhal’s Password recovery tool actually allows an attacker to

change the password of a user. The tool creates a hash for the new password, using

Microsoft’s hashing scheme implementation, then inserts the new hash, overwriting the

25

old hash, and so changing the password. This is all done from outside the Microsoft

environment, consequently bypassing Microsoft’s security and audit features.

B. DPS IDENTIFICATION AND AUTHENTICATION

The DPS still retains the standard Identification and Authentication (I&A)

procedures. A user logs into a computer using his user id, which is unique. Along with

the user id, the user responds with a forty-character passphrase. The user ID and pass

phrase are passed to an I&A server (figure 5.1).

Figure 5.1 Passing Credentials

Client Identification
and

Authentication
Server

User ID: croth
Passphrase:2bornot2bthatisthequestionwhethertisnobl

The I&A server would first verify that the user id is valid by consulting a list on

the server (Table 5.1). Associated with each valid user id would be a permutation of the

set {1,2,3,4,5}. These permutations are themselves associated with 5!=120 different

encryption methods. The user’s passphrase is broken into five segments, and the

encryption method applied to the jth segment is determined by the jth component in the

associated permutation. The sequence of permutations would be “randomly” generated.

After 120 users, a new sequence would begin.

26

USER ID Encryption Sequence
croth 23145
bmichael 54123
ras 32514
tjdevlin 43215
aaharper 32541

… …

Table 5.1 user_id Table

We will demonstrate this procedure using the forty-character passphrase,

“2bornot2bthatisthequestionwhethertisnobl,” and user id, “croth”. We first break this

phrase into five, eight-character segments (see table 5.2).

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5

2bornot2 bthatist hequesti onwhethe rtisnobl

Table 5.2 Segmented Passphrase

Each of these segments would then be passed from the I&A server to an

encryption device, as determined by the table on the I&A server. We propose a separate

encryption device, not co-located with the I&A server, for each segment. In this

example, we would use five separate computers for encryption.

Returning to our example above, the user croth’s pass phrase has been segmented.

The I&A server passes each segment, along with the user id, to the assigned encryption

device. Continuing with the example above, Segment 1 (2bornot2) would go to

encryption device 2, Segment 2 (bthatist) would go to encryption device 3, Segment 3

(hequesti) would go to encryption device 1, and so on (figure 5.2).

27

Encryption
Device 1

Encryption
Device 2

Passphrase Segment 3:
croth hequest

Passphrase Segment 5:
croth rtisnobl

Passphrase Segment 4:
croth onwhethe

Passphrase Segment 2:
croth hequest

Passphrase Segment 1:
croth 2bornot2b

Encryption
Device 5

Encryption
Device 4

Encryption
Device 3

Figure 5.2 Encryption of Segments

The I&A server would not do any of the encryption itself. The only information

that it would store would be the user ID and the sequence. The only information that it

would pass to each encryption device would be the user ID along with the assigned

segment. At this point, the I&A server would wait for responses from the encryption

devices, either confirming or denying that the segment is valid for this user.

C. ENCRYPTION PHASE

The next phase of the DPS is the encryption phase. The encryption itself is not

the weakness that enables password cracking. Passwords are not reverse-engineered by

inverting the hash or the encryption. Rather, the same encryption scheme used by the

operating system under attack is used to encrypt or hash words or phrases in an attempt to

match what is stored in the password file. What DPS proposes is the incorporation of

multiple encryption schemes in the I&A process. By segmenting the passphrase, using

multiple encryption methods, and storing the hashes separately, we mitigate the risks

associated with a single password file.

28

1. Encryption Devices

Each of the encryption devices would receive its segment of the passphrase and

the user id. The simplest way to understand the process is to compare each of the

encryption devices, or servers, to an instance of the current password that holds only one

fifth of the actual passphrase (figure 5.3).

After the initial installation, each of the encryption devices would have a

particular encryption method installed. We propose to allow the option of using different

encryption methods for each device. In fact, we would encourage this. The idea is to use

encryption methods that have been accepted by cryptographers for use with passwords

(e.g., DES, 3DES, MD5 hashing, Advanced Encryption Standard) in a multi-layer

defense. Each device would have its own encryption scheme and a database containing

the user id and cryptographic value of the input segment.

In our example, Segment 1 (2bornot2) would go to encryption device 2.

Encryption Device 2 is using Data Encryption Standard (DES). Upon receipt, encryption

device 2 would encrypt the segment and compare it to the value in the database. If the

value in the database equals the encryption value, then this segment is accepted as valid.

DES User ID E(seg)

croth jksdjgroie9

Stored Encrypted Segment

Segmented Passphrase # 1
2bornot2

Encryption Device 2
Implementing DES Encryption

jksdjgroie9

User id

Select

Compare

Figure 5.3 DES Encryption Example

29

The encryption device sends a validation back to the server for this segment (figure 5.4).

Each of the encryption devices would go through the same sequence of steps,

returning a validation or denial to the I&A server. The difference would be that each

encryption device would use a different encryption scheme. The encryption devices

would not interact with one another, and each would be responsible only for its own

segment of the passphrase.

Encryption
Device 1

Yes

Yes

Yes

Yes

Yes

I&A
Server

Encryption
Device 2

Encryption
Device 3

Encryption
Device 4

Encryption
Device 5

Figure 5.4 Responses Back to Server

Only after the I&A server has received all five validations, one from each

encryption device, would the user be authenticated. If any response comes back negative,

the user is denied access to the system.

Upon receipt of a full set of validations, the user is authorized access to the

computer system.

D. ANALYSIS OF THE DPS ALGORITHM
After observing that a single password file is vulnerable and often exploited, we

have informally outlined a possible solution, which is to distribute the password file.

Whether the DPS is a viable scheme remains to be determined. We must ensure that the

30

scheme will actually work, and that the additional complexity will be acceptable. To

facilitate this analysis, we state the DPS procedure more formally.

Algorithm for LOGIN
id string
phrase string
read id
read phrase
IDENTIFY (id, phrase)

Upon user login, the system reads the user’s credentials, id, and phrase. These

credentials are passed to the Identification and Authentication server using the

IDENTIFY procedure..

Algorithm for IDENTIFY

IDENTIFY (user_id, passphrase) // user_id and passphrase read in by
 // login procedure

valid boolean
x,y, i, j, integers
user_id, passphrase, segment string
sequence_num[] array //array of numbers no larger than five
 // elements consisting 1-5
user_table record // Table consisiting of a user_id,
 // with an associated five digit
 // sequence number

valid ← true
x ← 1
y ← 8
i ← 1
j ← 0

if (SEARCH (user_table, user_id) not = 0) // search returns seq_num[]
 // if user_id found
 then
 do while (valid and i < 6) // sentinel control for while
 // loop breaks if any
 // authenticates return false
 // or if all five authenticates
 // return true

segment ← PARTITION (passphrase, x, y)
j ← sequence_num[i]
i ← i + 1

31

x ← x + 8
y ← y + 8

if j = 1

then valid ← AUTHENTICATE_1 (user_id, segment)
else if j = 2

then valid ← AUTHENTICATE_2 (user_id,
segment)

 else if j =3
 then valid ← AUTHENTICATE_3 ….

…
if (not valid) access denied

else if valid access granted
else
access denied

 The algorithm calls the SEARCH routine to verify that the user_id exists in the
user table. If the user_id exist, then segment each portion of the passphrase with the
PARTITION procedure. Each segment is then paired with the value of the ith element of
the sequence number, authenticated using the AUTHENTICATE_procedures. If any of
the AUTHENTICATE procedures returns false, or if they all return true, control breaks
from the while loop. A single failure of AUTHENTICATE denies user access to the
system.

SEARCH (user_id)

sequence_num ← nil
count ← 0
 while count < size of user table

 do count ← count +1
 if user_id = user_table [count]
 then sequence_num ← sequence_table [count]
 else

return sequence_num

SEARCH searches the user_id_table, indexed on the user_id. If the user_id is
found, then the sequence number is returned. If the user_id is not found (invalid user)
then nil is returned.

PARTITION (passphrase, x, y)

segment string
segment ← copy passphrase starting at the xth character

ending at the yth character
return segment

32

PARTITION copies the passphrase starting at the xth character and ending at the

yth character, creating an eight character segment. It then returns this segment

AUTHENTICATE

AUTHENTICATE (user_id, segment)

if SEARCH (user_id) not = 0 // Searches encryption table

 // indexed on user. If user exist

// return encrypt_tag_seg else return
// 0

 // encrypted_table_segment

then
if ENCRYPT(segment) = encrypt_tab_seg

 then return true

else
return false // calls the preset encryption

//routine

// returns encrypted segment

else
return false.

AUTHENTICATE searches the encryption table for a valid user id. If the user id

is found, the segment is encrypted and compared to the encrypt_tab_seg. If both these

values are equal, the procedure returns true. Otherwise the procedure returns false. Since

each AUTHENTICATE procedure is the same (except the actual ENCRYPT function) it

only needs to be listed once.

33

The DPS does not use new storage, search or encryption techniques. The purpose

of the DPS is to build on tools that are already available and in current use. Even the

encryption will not add additional complexity because each encryption device is handling

one segment and doing one set of calculations.. There are five segments that need to be

encrypted, but each is being processed at a separate location in constant time. The

complexity of encryption can therefore be reduced to a constant. It follows that the

overall complexity of this authentication procedure is driven solely by the search

implementation. Since the search algorithms for the sequence table and the encryption

table are standard linear searches, with run time O(n) [Ref.8], our scheme requires O(n)

time, where n is the number of entries in the user table. This complexity may be reduced

further, if required, by implementing other search and storage algorithms.

E. UML MODEL

After determining that the DPS adds no significant computational complexity, the

next step is an analysis of the design. The DPS is an ideal candidate for using an object-

oriented approach. This allows us to model the DPS in the Unified Modeling Language

(UML).

Analysis emphasizes the investigation of the problem rather than definition of a

solution [Ref. 22]. In the DPS system, we have determined that the problem in current

computer systems is the implementation of a single password file and the vulnerabilities

associated with this file.

The design phase emphasizes a high-level and detailed description of a logical

solution and the way in which it fulfills the requirements and constraints in effect [Ref.

22]. Using UML, we can finish both the analysis and the design phase in an object-

oriented analysis and design. This will allow ease of transition during the construction or

object oriented programming, because the design components could than be implemented

in such object oriented languages as C++, Java, Smalltalk, or Visual Basic, to name just a

few [Ref. 22, 23].

We can easily describe the DPS using UML Use Cases. Table 5.3 and 5.4 show

the high level Use Case and the expanded level Use Case for the DPS. Specifically, they

describe the user login procedures.

Use Case Login
Actors: User
Type: Primary (to be discussed)
Description: User attempts to login into a computer

system. The user passes credentials to the
system for Identification and
Authentication. Upon acceptance of
credentials, user access the system

Table 5.3 High Level Use Case

34

The expanded case allows us to show more detail, and essentially obtain a deeper

understanding of the DPS process and requirements.

Use Case: User Login
Actors: User
Purpose: Identify and Authenticate user to the

network or system
Overview A user logs into a client workstation

presenting a user id and passphrase. The
I&A server checks the user id, then
partitions the passphrase into five
segments. Once each segment is encrypted
and verified, the user is authorized access
to the system.

Type Primary and Essential

Typical Course of Events
Actor Action System Response
1. This use case begins when a user tries to
access the system

2. The user presents credentials:
user_id, passphrase

3. Determine whether user_id is valid by
searching user_id table

 4. If user_id is valid, partition passphrase,
and pass segments to identified encryption
device, according to sequence.

 5. Receive responses back from encryption
devices. If all responses positive allow
user access to system.

6. User Access System

Table 5.4 Expanded Use Case

The Use Case allows for us to map the sequential flow of activities into the

activity diagram. Activity diagrams provide a way to model the workflow of a business

process, or in our case the Identification and Authentication process for the DPS. This

also allows us to model code-specific information such as a class operation for easier

transition to an object oriented language.

The activity diagram allows us to model the DPS workflow (Fig. 5.6). The

transition of passphrase from user to the I&A server and its subsequent segmenting

35

allows for easier understanding from a design point of view. The notes to the side for

pseudocoding allow for an easier implementation in coding the DPS in an object oriented

language. The activity diagram would assist as the model in the software development

process. [Ref. 23].

Invalid Credentials

Valid User

Identify User

Does User Exist

No

partition
passphrase

Yes

match segment
to sequence#

authenticate
user

User Authenticated?

No

Yes

No

if user_id is element of
sequence_table
 then
 sequence_table
 return sequence#[]
 else
return false

PARTITION (passphrase, x, y)
segment string
segment ? copy passphrase starting at
the xth character
ending at the yth character
return segment

do while (valid and i < 6) // sentinel control for while
// loop breaks if any
// authenticates return false
// or if all five authenticates
// return true

segment := PARTITION (passphrase, x, y)
j := sequence_num[i]
i := i + 1
x := x + 8
y := y + 8

if j = 1
then valid := AUTHENTICATE_1 (user_id, segment)

else if j = 2
then valid := AUTHENTICATE_2 (user_id, segment)

else if j =3
then valid := AUTHENTICATE_3 ….

…
if (not valid) access denied
else if valid access granted

Search for
User

User Exist?

Compare
Encryption

if user_id is element of encryption_table
 then
 if encrypt(segment) = e_table_seq
 return true
 else
 return false
else
 return false

encrypt function is systems administrator
chosen encryption or hashing algorithm
such as:
DES, 3DES, MD5, Blowfish, etc

AuthenticateIdentifyUser

Figure 5.5 Activity Diagram

The sequence diagram provides a graphical view of a scenario that shows object

interaction in a time-based sequence. In the DPS, the sequence diagram provides us the

necessary clarification of each phase of the login process [Ref. 23].

36

 : User Segment (Passphrase) :
Identification

 : Proxy Compare(Epwd, Eseg) :
Authenticate

 : ServerUser : Crypto : UserCredential

Login(UID, Passphrase)

FindUser(UID)

Sequence#

Segment(Passphrase)

Match(Segment_n, Sequence_m)

Authenticate * 1..5(UID,Server_m, segment_n)

Authenticate(UID,segment_n)

FindUser_n(UID) , Epwd

Encrypt (segment_n), Eseg

Compare(Epwd, Eseg)
ValidID()

ValidID()Authenticate_User()

 Figure 5.6 DPS Sequence Diagram

Modeling in UML allows us to quickly see that the implementation of the DPS is

not difficult. We have clearly defined the boundaries and procedures for each phase of

the login procedure of the DPS. It also allows us to track the flow control of the program.

We could further refine these in defining a state diagram for further security analysis.

Use of a software tool such as Rational Rose would help us in porting the DPS into an

actual object oriented program [Ref. 23].

For a pilot implementation of the DPS, we turned our attention to modification of

a current operating system.

F. LINUX: A CANDIDATE FOR THE DPS

After a review of operating systems and source code we decided that the ideal

candidate for a first implementation of the DPS would be a Linux-based operating system

that supports the Pluggable Authentication Modules (PAM). These operating systems

include Caldera, Debian, Red Hat Linux, SuSe Linux, and MSC.Linux. Even Apple OS-

37

X has implemented Linux-PAM [Ref. 24]. Linux-PAM is a suite of shared libraries that

enable local systems administrators to choose how applications authenticate users [Ref.

24]. PAM allows the system administrator to set authentication policies for PAM-aware

applications without having to recompile authentication programs. PAM does this by

utilizing a pluggable, modular architecture. The precise modules PAM calls for a

particular application are determined by looking at that application's PAM configuration

file in the /etc/pam.d directory [Ref. 24]. A Linux-PAM module is a single executable

binary file that can be loaded by the Linux-PAM interface library.

Currently PAM is employed by the I & A process for managing password

security. Tasks include enforcing policies regulating length and maximum age of

passwords, tracking the changes users make to their passwords, and a host of other

functions to deter password cracking. However, the real strength in PAM is its flexibility

in the authentication process.

PAM gives systems administrators the ability to choose an authentication scheme.

PAM allows authentication processes to range anywhere from voice recognition to one-

time passwords. It does this by separating the I & A process into four types of

management tasks: authentication management, account management, session

management, and password management. This process is all modular, allowing modules

to be stacked upon one another. The use of these modules enables PAM to search

through several different password databases [Ref. 24]. For example, the Apache web

server has a module that provides PAM services. This allows additional operating system

password and protection schemes to be used. There are PAM modules that allow the use

of series of databases to authenticate users. This allows authentication using LINUX

based password databases in conjunction with password databases such as those from

NT, or Novell. A systems administrator can create an authentication process, for a

particular system in conformance with the PAM specifications, and then implement it

without modifying any of the applications on the system. The administrator can even

incorporate current PAM processes without rewriting or recompiling these PAM-aware

applications [Ref. 25].

A possible DPS PAM-aware application might look like this:

38

1 #%PAM-1.0
2 auth required /lib/security/pam_dps.so userid
3 account required /lib/security/pam_segment.so
4 password required /lib/security/pam_encrypt1.so
5 password required /lib/security/pam_encrypt2.so
6 password required /lib/security/pam_encrypt3.so
7 password required /lib/security/pam_encrypt4.so
8 password required /lib/security/pam_encrypt5.so
9 session required /lib/security/pam_unix.so

The first line is a comment line. The second line calls the module that prompts

for a user name and passphrase. It checks the user_id for validity using the information

stored in the /user_id file. If the user exists, the passphrase is then passed to the segment

module. This breaks the passphrase into five separate segments. It then sends each of the

segments to their respective encryption module. The final line specifies that the session

component of the pam_unix_so module will manage the session.

As stated previously, the real strength in PAM is its flexibility. PAM modules

that are already created could be incorporated into any PAM aware application. We

could theoretically replace line 4 with

 auth required /lib/security/pam_unix.so,

allowing use of the standard Unix password scheme, which stores the password in the

/etc/passwd. We could also incorporate additional security modules such as the

pam_cracklib.so to see if a segment can be easily determined by a dictionary-based

password-cracking program.

By stacking the modules, we force each of the encryption modules to return

positive responses before allowing a user session access.

G. MONETARY COST OF IMPLEMENTATION

The initial design layout of the DPS consists of a client, an I&A server, and five

encryption devices. The physical model cost would consist of the expenses related to the

I&A server and the five encryption devices. Each encryption device would consist of a

standalone computer system. Given this broad description, and without including cost of

programming, our cost could run to several thousands of dollars.

39

One strategy by which we might reduce the cost would be to implement the DPS

in a Linux Beowulf Cluster, which allows for the implementation of a master computer

and slave computers. The slave computers are basically processors equipped with

storage. This approach would eliminate the cost of monitors and keyboards for the

encryption devices.

Another possibility is the implementation of virtual machines on the I&A server

itself. This would eliminate the need for additional computers altogether. VMware is a

perfect example of a software solution of this kind. It allows us to operate several guest

operating systems within one host operating system. These guest operating systems are

given separate disk space as well as their own Internet Protocol (IP) addresses. In

essence, one can create a virtual network on a single machine. This allows us to have one

physical machine, that is logically an I&A server with five encryption devices (fig. 5.8).

Each of the encryption databases would be accessible only through the guest operating

system. Even if the host system were compromised, the guest system would not

necessarily be. The cost of this would consist only of the software license, approximately

three hundred dollars.

VMware Running one Host Operating System and
five Guest Operating System

Physical View

Logical View

s

Figure 5.7 Physical and Logical View VMWare

40

H. WEAKNESSES OF THE DPS
The DPS was introduced to counter the weaknesses of passwords and the single

password file. The DPS does not eliminate all security concerns. It also has some

weaknesses.

1. Denial of Service
By introducing five segmented passphrases, the system relies on the response of

all five segments before it grants authorization to a user access. If any of these segments

returns with a negative reply then user access is denied. The system is vulnerable to the

possibility of a denial of service if any one of the five segments is prevented from

encrypting its segment. The system is also vulnerable if any of the encryption devices is

blocked from sending a positive response. If this happens, the system is unavailable to a

legitimate user. This violates one of the tenets of computer security, namely availability

of the system.

We might address this by creating additional encryption devices serving as

backup devices. This solution would have an increased monetary cost for the additional

hardware to implement this solution. There could be additional computational

complexity cost as the algorithm would have to be rewritten to accommodate additional

devices, as well as the timing, sequencing, and selection of the devices were incorporated

into the system.

2. Software Implementation
Implementing the encryption in a software device gives us the advantages of

flexibility and portability, ease of use, and ease of upgrade [Ref. 20]. The ability to

choose the encryption scheme per device is one of the biggest advantages of the DPS. It

might also be its weakness. The encryption algorithm could be replaced with a weak or

reversible algorithm. The management of the keys, in this case the password segments,

must be secured. The segments should not be stored on disk or written to a place in

memory.

The speed and cost of software implementation of encryption is another

disadvantage. Standard DES and RSA encryption, run inefficiently on general purpose

processors. We propose moving each encryption to a separate processor, that only

41

handles the encryption to counter this problem. Even though some cryptographers have

tried to make their algorithms more suitable for software implementation, specialized

hardware will always be faster [Ref. 20].

An encryption algorithm running on a generalized computer has no physical

protection, where hardware encryption devices can be securely encapsulated to prevent

physical tampering [Ref. 20].

Hardware implementation of cryptography is also easier to install than the

corresponding software version. It is cheaper to put special-purpose encryption in

hardware, than it is to put it in a microprocessor and software [Ref. 20]. Even when

encrypted data comes from the computer, it is easier to install a dedicated hardware

encryption device than it is to modify the computer’s systems software. The only way to

make encryption invisible to the user in software is to bury it deep inside the operating

system, which is not easy [Ref. 20].

 3. Mistyped Passphrase
Though there are no statistics to track how many times users mistype their

passwords, a longer passphrase would probably increase the number of failed login

attempts simply because of its length.

4. Common Passphrases
The potential problems of common passphrases still remain. One such problem

would be the use of personal information (e.g., a father using all of his children’s names).

An attacker using social engineering skills would still be capable of discovering the

passphrase, as the previously-mentioned study suggests. Another potential problem

could be the increase in the small number forty-character pass phrases that may not be in

the dictionary but that are nevertheless part of modern literature (e.g.,

Supercalifrajalisticexpialidocious!!!!!!) The more cumbersome authentication method

also increases the risk of a user writing down the passphrase, or, if the DPS is

implemented on multiple systems, using the same phrase more than once.

5. Login Delays
The added procedures for parsing the passphrase into segments, and encrypting

each segment do not add additional delays to any one section of the DPS. However, the

42

user is not authenticated until all encryption servers return a positive response. Awaiting

five responses might add additional time to the authentication of a user

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

VI. CONCLUSIONS AND RECOMMENDATION FOR FUTURE
WORK

Passwords and password files continue to be weaknesses in the Identification and

Authentication. There is a need to address this weakness because it has been identified as

a consistent point of failure. In this thesis we described how current computer systems

incorporate passwords into their I&A process. These systems included open-source

UNIX-type operating systems as well as commercial off the shelf products for which the

source code is not freely available, such as Microsoft’s network operating systems. The

weaknesses and commonly exploited vulnerabilities were analyzed to facilitate

development of a solution that would not add significant cost to the end user.

In particular, the work described in this thesis models a Distributed Password

Scheme (DPS) in a network environment. The DPS proposed replaces the eight-

character password with a forty-character passphrase, segments this passphrase,

distributes the various segments among subsystems, and incorporates multiple encryption

techniques for protecting these distributed segments. The advantages of such an

implementation are the elimination of a single “hackable” password file, the elimination

of easily-guessed common passwords, and resistance to current “hacker tools”.

The thesis presented a solution that did not add significant amount of

computational complexity to current systems, while incorporating current available

technology and approved cryptography. The model was further designed and refined

using the Universal Markup Language (UML).

The model is a reference for implementing an I&A process that does not depend

on the single password file. The model has not been finalized or perfected; this leaves a

number of targets for future research. The next step would be the actual implementation

of the DPS.

In considering such an implementation, Linux-Pluggable Authentication Modules

(Linux-PAM) were viewed as ideal candidates for the DPS. Linux-PAM allows for the

incorporation of various authentication methods without creating significant cumbersome

changes to the operating system or current applications. It also allows incorporation of

current Linux-PAM security measures for strengthening the I&A process.

45

Actual implementation of a software solution in a network environment would

allow the collection of data in a real-time environment. This would allow the analysis of

latency problems during transmission and storage of passwords and passphrases in

memory as well as the protection of the databases in memory and secondary storage.

Implementation costs were also discussed, including a possible cost-efficient prototype

solution using VMWare on a single computer. Future research is needed to study the

feasibility and scalability aspects that result in a software design. Future research can

determine the extent and limitations of a software design, as well as a hardware

implementation. Possible research in analyzing both implementations could be done.

The DPS is not presented as a “silver bullet” solution to computer security. The

thesis presented a solution to address the single password file weakness. Implementing

the DPS adds another layer of protection but in no way are we touting this as the

computer security solution.

46

LIST OF REFERENCES

[1] Pfleeger, Charles P. (1997). Security in Computing. Upper Saddle River,
NJ: Prentice Hall.

[2] Squitieri, Tom. (2002, May 5). Cyberspace Full of Terror Targets.

USAToday.

[3] Freedman, David H., and Mann, Charles C. (1997). @Large, the Strange

Case of the World’s Biggest Internet Invasion. New York, NY: Simon
and Shuster.

[4] Hafner, Katie and Markoff, John. (1991). Cyberpunk, Outlaws and

Hackers on the Computer Frontier. New York, NY: Touchstone, 1991.

[5] Stoll, Clifford. (1989). The Cuckoo’s Egg. New York, NY: Pocket

Books.

[6] Lemos, Robert. (3 May 2002). Hacker Finds Fault in .NET Security.

C/Net News.com,.http://news.com.com/2100-1001-898219.htm.

[7] Scambray, Joel, and McClure, Stuart. (2001). Hacking Exposed Windows

2000: Network Security Secrets & Solutions. New York, NY:
Osborn/McGraw-Hill.

[8] Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. (2001).
Introduction to Algorithms, Second Edition. Cambridge, MA: MIT Press.

[9] Stallings, William. (1999). Cryptography and Network Security,

Principle and Practice. Upper Saddle River, NJ: Prentice Hall, Inc.

[10] Hatch, Brian, Lee, James, and Kurtz, George. (2001). Hacking Linux

Exposed: Linux Security Secrets & Solutions. New York, NY:
Osborn/McGraw-Hill.

[11] Jackson, Michael. (1996). Linux Shadow Password HOWTO.

http://www.tidp.org/HOWTO/Shadow-Password-HOWTO.html#2toc2,
April 1996.

[12] Morris, R., and Thompson, K. (1979). Password Security: A Case

History. In Comm ACM, v22 n 11, Nov 1979.

47

http://www.tidp.org/HOWTO/Shadow-Password-HOWTO.html

[13] Kolde, Jennifer. (2000). Password Security in Windows NT and
Windows 2000.
 http://www8.wire.com/articles/print_article.asp?printAID=1582,
December 2000.

[14] Denning, Dorothy. (2000). Information Warfare and Security. Reading,

MA: Addison-Wesley.

[15] Reynolds, James. (2001). Mac OS X Security - Password file.
http://www.macos.utah.edu/Documentation/Mac_OS_X_Security/passwd.
html. June 6 2001.

[16] Meinel, Carolyn. (2000). Uberhacker! How to Break into Computers.

Port Townsend, WA: Loompanics Unlimited.

[17] Schwartau, Winn. (2000). Cybershock, Surviving Hackers, Phreakers,

Identity Thieves, Internet Terrorists, and Weapons of Mass Disruption.
New York, NY: Thunder’s Mouth Press.

[18] Brown, Andrew. (2002, March 13). UK Study: Passwords Often Easy to

Crack. CNN.com/SCI-TECH.
http://www.cnn.com/2002/TECH/ptech/03/13/dangerous.passwords/index.
html?related.

[19] Schneier, Bruce. (2000). Secrets & Lies: Digital Security in a Networked

World. New York, NY: John Wiley & Sons, Inc,.

[20] Schneier, Bruce. (1996). Applied Cryptography Second Edition:

Protocols, Algorithms, and Source Code in C. New York, NY: John
Wiley & Sons, Inc.

[21] McNamara, Joel. (1997, August). Practical Attacks on PGP,

http://www.privacy.com.au/pgpatk.html.

[22] Larman, Craig. (1998). Applying UML and Patterns, an Introduction to

Object-Oriented Analysis and Design. Upper Saddle River, NJ: Prentice
Hall PTR..

[23] Quantrani, Terry. (2000). Visual Modeling with Rational Rose 2000 and

UML. Boston, MA: Addison-Wesley.

[24] Morgan, Andrew. (2002, March). Linux-PAM Users.

http://www.kernel.org.

[25] -http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manuals/ref-

guide/s1-pam-modules.html (2000, June).

48

http://www8.wire.com/articles/print_article.asp?printAID=1582
http://www.macos.utah.edu/Documentation/Mac_OS_X_Security/passwd.html
http://www.macos.utah.edu/Documentation/Mac_OS_X_Security/passwd.html
http://www.cnn.com/2002/TECH/ptech/03/13/dangerous.passwords/index.html?related
http://www.cnn.com/2002/TECH/ptech/03/13/dangerous.passwords/index.html?related
http://www.privacy.com.au/pgpatk.html
http://www.kernel.org../

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Lieutenant Commander Chris Eagle
Naval Postgraduate School
Monterey, California

4. Professor James B. Michael
Naval Postgraduate School
Monterey, California

5. Professor Craig Rasmussen
Naval Postgraduate School
Monterey, California

6. Mr. Steve LaFountain (C4)
 National Security Agency
 Fort Meade, Maryland

7. Major Christopher Roth

United States Army Student Detachment
Fort Jackson, South Carolina

49

	I.INTRODUCTION
	A.PROBLEM STATEMENT
	B. DISCUSSION
	C.HYBRID ENCRYPTION SCHEME: A WAY FORWARD
	
	
	In this thesis we introduce a hybrid encryption scheme that involves distributing the protection throughout the physical components of the information system, obviating the need for centralized storage of password data. The scheme will use various encry

	II.EXPLOITATION OF PASSWORDS AND PASSWORD FILES
	A.THE BASIS OF THE CONCERNS
	1. Infomaster and the Penetration of Bureau of Land Management
	2. The INTERNET Worm of 1987
	3. The First Documented Case of Cyber Espionage
	4. Password Insecurities of Tomorrow

	B. PRIMARY TARGET

	III.PASSWORD SCHEMES
	A.MICROSOFT NETWORKING OPERATING SYSTEMS
	1. Login and Authentication
	2. Password Storage
	3. System Key (SYSKEY)
	4. Single Password File

	B.UNIX
	1. Password File Storage
	2. Crypt (3) Function Key move to next page
	3. User login
	4. System Storage of the Password File

	IV.PASSWORD IMPLEMENTATION
	A.WEAKNESSES OF PASSWORDS
	1. Password Attacks
	2. Poor Password Choices
	3. Policies to Protect Passwords

	B.WINDOWS FLAWS
	1. Old Hash Conversion
	2. Password “Cracking”
	a.Backward Compatibility
	\(1.\)Local Area Network Manager \(LANMan\).�
	(2..) Local Security Policy Setting Store. Another compatibility issue is in the Local Security Policy Setting Store Passwords with Reversible Encryption. Though this is only applicable on the Active Directory Domain Controllers, it does lead to the

	C.UNIX FLAWS
	1. World Readable Password File
	2. Shadow Password File Vulnerability

	D.GENERAL WEAKNESSES OF PASSWORDS
	E. IMPLEMENTATION OF PASSPHRASES

	V. A DISTRIBUTED PASSWORD SCHEME FOR NETWORK OPERATING SYSTEMS
	A.MIGRATION FROM PASSWORDS TO PASSPHRASES
	B.DPS IDENTIFICATION AND AUTHENTICATION
	C.ENCRYPTION PHASE
	1. Encryption Devices

	D. ANALYSIS OF THE DPS ALGORITHM
	E. UML MODEL
	F. LINUX: A CANDIDATE FOR THE DPS
	G. MONETARY COST OF IMPLEMENTATION
	H. WEAKNESSES OF THE DPS
	1. Denial of Service
	2. Software Implementation
	3. Mistyped Passphrase
	4. Common Passphrases
	5. Login Delays

	VI. CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

